LASER SYSTEM FOR SINGLE EVENT EFFECTS (SEE) TESTING

Feng Liang, Steeve Lavoie
Outline

- Introduction
 - What is a Single event effect (SEE)
 - How SEE testing is done
 - Advantage and limitation of pulsed laser testing system

- ASP 2nd generation laser system for SEE testing
 - Basics of laser-matter interaction
 - Femtosecond laser
 - Imaging system
 - Positioning system

- Conclusion
What is a SEE?

- Electrical disturbance in a microelectronic circuit caused by the passage of a single energetic particle, heavy ions, protons or neutrons through semiconductor material.

- A circuit functional error or a circuit failure either temporarily or permanently could take place if the single energetic particle induces sufficient plasma density reaching critical charge criteria and the induced charges (electron-hole pairs) are collected at a sensitive node.

*Sensitive node: a node in a circuit whose electrical potential can be modified by internal injection or collection of electrical charges.
Types of SEE:

- Non-destructive/Soft Errors: SEU, SET, SEL
- Destructive/Hard Errors: SEL, SEGR, SEB

SET (Single Event Transient)
SEU (Single Event Upset), a transient effect, affecting mainly memories
SEL (Single Event Latch-up), can destroy the component, affecting mainly CMOS
SEGR (Single Event Gate Rupture), potentially destructive, affecting mainly submicron structure
SEB (Single Event Burnout), has destructive impact, affecting mainly power MOSFET
What is SEE testing?

- Exposure of a microelectronic circuit (DUT: device under test) to a beam with known characteristics and observation of the circuit response

How SEE testing is done?

- Radiation method (simulate the space environment with particle accelerator)
- Ultrashort pulsed laser method
- Short pulsed X-ray method
DUT strike

*SPA: single photon absorption
TPA: Two photon absorption

SPA or TPA depending on laser wavelength selection
Advantages and limitations of laser testing

Advantages

- Providing detailed **spatial** (mapping) and **temporal** information (SPA, and TPA)
- Possibility of splitting beam into parallel for multi sensitive nodes testing
- No radiation damage
- Fast and low cost

Limitations

- No absolute measure of SEE threshold
- No direct measure of asymptotic cross-section
- Inability to penetrate metal
Basics of laser-matter interaction

\[
\frac{dI(r, z)}{dz} = -\alpha(\lambda)I(r, z) - \sigma_{ex}N I(r, z)
- \beta_2(\lambda)I(r, z)^2
\]

\[
\frac{d\Phi(r, z)}{dz} = \beta_1 I(r, z) - \gamma_1 N(r, z)
\]

\[
\frac{dN(r, z)}{dt} = \frac{\alpha(\lambda)I(r, z)}{\hbar\omega} + \frac{\beta_2(\lambda)I^2(r, z)}{2\hbar\omega}
\]

\(I(r,z)\): laser intensity
\(\Phi(r,z)\): phase
\(r,z\): radial and penetration positions
\(\sigma_{ex}\): free electron absorption cross-section
\(\gamma_1\): refraction factor due to free electron
\(\alpha(\lambda)\): SPA coefficient
\(\beta_2(\lambda)\): TPA coefficient (~1 cm/GW)
\(N\): plasma density
\(\omega\): laser frequency
Plasma lifetime in silicon: ~ 10s ns
Absorption Coefficient of Silicon
Penetration depth in silicon
<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Absorption coefficient (/cm)</th>
<th>Absorption depth (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>530</td>
<td>7.85E+03</td>
<td>1.27</td>
</tr>
<tr>
<td>800</td>
<td>8.5E+02</td>
<td>11.8</td>
</tr>
<tr>
<td>1030</td>
<td>30.2</td>
<td>331</td>
</tr>
<tr>
<td>1060</td>
<td>11.1</td>
<td>901</td>
</tr>
<tr>
<td>1240 (TPA)</td>
<td>2.4E-03</td>
<td>4.17E+06</td>
</tr>
</tbody>
</table>
Two-photon absorption

- Nonlinear process
 - Several orders of magnitude weaker than single-photon absorption (because it depends on the probability of simultaneously absorbing two photons at the same time).
 - Strength of absorption depending on the square of the laser intensity (therefore, ultrashort pulse laser is required).

- Photon energy
 - Single-photon absorption: photons with energies exceeding the band-gap
 - Two-photon absorption: smaller than band-gap and higher than half the band-gap (silicon band-gap: ~1.1 eV / ~ 1127 nm). For TPA to take place in silicon, a femtosecond laser with wavelength greater than ~1127 nm is thus required.
Advantage of TPA

- **Penetration depth**
 - No limit for TPA, capable of 3D mapping, back-side irradiation of circuits and devices built on silicon wafers; avoid interference from metal overlayers
 - ~1 \(\mu \)m Up to ~1 mm for SPA depending on wavelength

- **Interaction zone**
 - Deposited energy well confined in the focal zone for TPA due to the nonlinear absorption
 - Linear absorption taking place along the laser path in silicon for single photon absorption

Disadvantage of TPA
- Reduced resolution for the microscope system
- High cost for the ultrashort laser system
Applications of SPA and TPA

- SPA: can be used for font-side and back-side irradiations, but it is limited in the penetration depth (~1 µm to ~1 mm).

- TPA: used for 3D mapping, back-side irradiation, theoretically can be focused to any depth. Mostly used for the situations that SPA cannot fulfill and high-density circuits and flip-chip configuration.
2nd generation SEE testing platform

- 1. Laser system with external power control and monitoring for irradiation
- 2. Telecentric Kohler-type illuminator for high-contrast shadow-free imaging
- 3. Imaging system (>1.5 Megapixel) for front side and back side irradiation
- 4. High resolution positioning subsystem based on a motorized xyz stage. Auto-focusing system could be incorporated if needed.
ASP laser system characteristics

<table>
<thead>
<tr>
<th>ASP laser system</th>
<th>Femto</th>
<th>Femto OPA for TPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>1030 nm</td>
<td>630-2600 nm</td>
</tr>
<tr>
<td>Max power</td>
<td>5 W</td>
<td>6 W</td>
</tr>
<tr>
<td>Rep. rate</td>
<td>Single shot ~ 1 MHz</td>
<td>Single shot ~ 100 kHz</td>
</tr>
<tr>
<td>Max pulse energy</td>
<td>60 μJ</td>
<td>> 200 nJ @ 1240 nm @ 1 kHz</td>
</tr>
<tr>
<td>Pulse width</td>
<td>< 400 fs</td>
<td>150 ~ 250 fs</td>
</tr>
<tr>
<td>External triggering for synchronization</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Beam quality</td>
<td>$M^2 < 1.2$, TEM$_{00}$</td>
<td></td>
</tr>
<tr>
<td>Energy contrast</td>
<td>23 dB</td>
<td></td>
</tr>
<tr>
<td>Shot to shot instability</td>
<td>< 2%</td>
<td>< 2%</td>
</tr>
<tr>
<td>Output polarization</td>
<td>H</td>
<td>630-1030 nm (H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1030-2600 nm (V)</td>
</tr>
</tbody>
</table>

For most SEE laser tests, the pulse energy on the DUT is varied from 10 pJ to 1 μJ.
Positioning stages (example)

<table>
<thead>
<tr>
<th>Item #</th>
<th>LNR50S</th>
<th>LNR50SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Range</td>
<td>50 mm (1.97")</td>
<td></td>
</tr>
<tr>
<td>Velocity (Max)</td>
<td>20 mm/s</td>
<td></td>
</tr>
<tr>
<td>Min Achievable Incremental Move</td>
<td>0.05 µm</td>
<td>0.3 µm</td>
</tr>
<tr>
<td>Bidirectional Repeatability</td>
<td>0.5 µm</td>
<td>0.3 µm</td>
</tr>
<tr>
<td>Backlash</td>
<td><6 µm</td>
<td></td>
</tr>
<tr>
<td>Horizontal Load Capacity (Max)</td>
<td>66 lbs (30 kg)</td>
<td></td>
</tr>
<tr>
<td>Vertical Load Capacity (Max)</td>
<td>22 lbs (10 kg)</td>
<td></td>
</tr>
<tr>
<td>Included Actuator</td>
<td>DRV014 Stepper Motor</td>
<td></td>
</tr>
<tr>
<td>Cable Length</td>
<td>500 mm (1.64 ft)</td>
<td></td>
</tr>
<tr>
<td>Recommended Controller</td>
<td>APT™ Stepper Motor Controllers</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Laser system for both SPA and TPA
- Real-time energy monitoring
- High resolution CCD (color and SWIR) for front and back side irradiation
- Kohler-type illumination for better imaging